# Mathematics: analysis and approaches Standard Level Paper 2

Name

Date: \_\_\_\_\_

1 hour 30 minutes

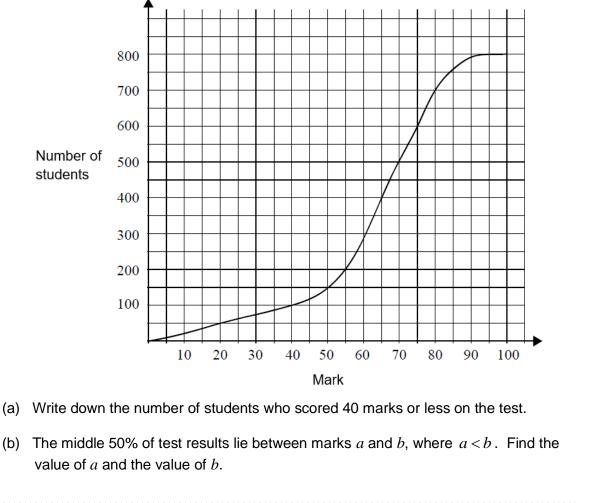
### Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [80 marks].

exam: 9 pages

[2]

[3]


Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

# **Section A**

Answer **all** questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

A test marked out of 100 is written by 800 students. The cumulative frequency graph for the marks is shown below.



[3]

## 2. [Maximum mark: 6]

A sum of \$3000 is invested at a compound interest rate of 4.6% per year.

- (a) Find the value of the investment at the end of seven years. [3]
- (b) The value of the investment will exceed \$5000 after *x* full years. Calculate the minimum value of *x*.

| <br> | <br> | <br> |
|------|------|------|
| <br> | <br> | <br> |

Find the two possible lengths of AC in triangle ABC given that angle A is  $42^{\circ}$ , AB = 12.7 cm and BC = 10.2 cm.

The third term in the expansion of  $(4x + p)^5$  is  $160x^3$ . Find the possible values of *p*.

For the students at a certain secondary school, it is determined that the time it takes to travel to school is normally distributed with mean  $\mu$  and standard deviation  $\sigma$ . It is found that 4% of students take less than 5 minutes to get to school and 70% take less than 25 minutes. Find the value of  $\mu$  and the value of  $\sigma$ .

..... ..... ..... ..... 

The acceleration, in  $m s^{-2}$ , of a particle at time *t* seconds is given by the function

$$a(t) = \frac{3}{t} + 2\sin 2t, \ t \ge 1$$

Given that the particle is at rest when t = 1, find the velocity of the particle when t = 6. [7]

 Do **not** write solutions on this page.

# **Section B**

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

### 7. [Maximum mark: 12]

8.

Each day, a factory records the number (x) of boxes it produces and the total production costs (y) in dollars. The results for nine days are shown in the following table.

|     |                                                                                                                                                    |                           |              |                                 | -                 |                              |               | -         |            |         |     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|---------------------------------|-------------------|------------------------------|---------------|-----------|------------|---------|-----|
| [   | boxes (                                                                                                                                            | ;) 26                     | 44           | 65                              | 43                | 50                           | 31            | 68        | 46         | 57      |     |
|     | costs (y                                                                                                                                           | ) 400                     | 582          | 784                             | 625               | 699                          | 448           | 870       | 537        | 724     |     |
| (a) | 1                                                                                                                                                  | be the regr<br>wn the eq  |              | •                               | on x that         | can be v                     | vritten ir    | the forr  | n $y = mx$ | x+c.    | [2] |
| (b) | Interpre                                                                                                                                           | t the mear                | ning of      |                                 |                   |                              |               |           |            |         |     |
|     | (i) the                                                                                                                                            | gradient n                | n;           |                                 |                   |                              |               |           |            |         | [1] |
|     | (ii) the                                                                                                                                           | y-intercep                | t <i>c</i> ; |                                 |                   |                              |               |           |            |         | [1] |
| (c) | Estimat                                                                                                                                            | e the cost                | of produ     | cing 60 k                       | ooxes.            |                              |               |           |            |         | [3] |
| (d) | The factory sells the boxes for \$19.99 each. Find the least number of boxes that the factory should produce in one day in order to make a profit. |                           |              |                                 |                   |                              |               | [3]       |            |         |     |
| (e) | ) Comment on the appropriateness of using the regression line $L_{\rm l}$ to estimate the cost of producing 1000 boxes.                            |                           |              |                                 |                   |                              |               | [2]       |            |         |     |
| [Ma | ximum m                                                                                                                                            |                           |              |                                 |                   |                              |               |           |            |         |     |
| (a) | Conside                                                                                                                                            | er the func               | tion h de    | fined by                        | h(x) = -          | $\frac{e^x}{\sqrt{x}}$ , for | $0 < x \le 3$ | 3.        |            |         |     |
|     |                                                                                                                                                    | tch the gra               |              |                                 |                   |                              |               |           |            |         | [2] |
|     | (ii) Fin                                                                                                                                           | h'(x).                    |              |                                 |                   |                              |               |           |            |         | [3] |
|     |                                                                                                                                                    | e down ar<br>ny point.    | n express    | sion repr                       | esenting          | the grae                     | dient of t    | the norm  | nal to the | e curve | [2] |
| (b) | Let P be                                                                                                                                           | the point                 | (x, y) or    | n the gra                       | aph of <i>h</i> , | and Q tl                     | ne point      | (1,0).    |            |         |     |
|     | (i) Fin                                                                                                                                            | d the gradi               | ent of (F    | $\mathbf{P}\mathbf{Q}ig)$ in te | erms of <i>x</i>  |                              |               |           |            |         | [2] |
|     |                                                                                                                                                    | en that the<br>imum dista | <b>`</b>     | /                               |                   |                              |               | t the poi | nt P, finc | d the   | [4] |

[4]

[2]

Do **not** write solutions on this page.

9. [Maximum mark: 16]

A quiz has five questions. To pass the quiz, at least three of the questions must be answered correctly.

The probability that Sophie answers a question correctly is  $\frac{1}{5}$ . Let *X* be the number of questions that Sophie answers correctly.

(a) (i) Find E(X). [2]

(ii) Find the probability that Sophie passes the quiz.

Isabel also takes the quiz. Let Y be the number of questions that Isabel answers correctly. The following table is the probability distribution for Y.

| у                 | 0    | 1    | 2    | 3   | 4    | 5    |
|-------------------|------|------|------|-----|------|------|
| $\mathbf{P}(Y=y)$ | 0.67 | 0.05 | a+2b | a-b | 2a+b | 0.04 |

(b) (i) Show that 4a + 2b = 0.24.

(ii) Given that E(Y) = 1, find the value of *a* and the value of *b*. [5]

(c) Determine which student is more likely to pass the quiz. [3]